

Milestones in Assessment of Corneal Biomechanics

Prof.Dr. *Mohamed Fakhry*, MD, FRCSEd

Corneal Biomechanics: Relevance

Biomechanics means the mechanical properties of biological tissue.

The <u>NEED</u> to study Corneal Biomechanics IN VIVO:

- Early Diagnosis of ectatic corneal conditions (KC and post LVC ectasia).
- Follow UP (Progression or after surgery; CXL).
- Screening of THE HIGH RISK population.

Factors influencing Corneal Biomechanics

□<u>Ultrastructure :</u>

• The anterior stroma:

50% stiffer than mid or posterior stroma : a network of highly interwoven collagen lamellae that insert into Bowman's layer.

Factors influencing Corneal Biomechanics

Changes with Age:

· Natural age-related crosslinking.

□ <u>Changes with Diabetes:</u>

Glycation of proteoglycan increasing crosslinking.

□<u>Changes with KC:</u>

Enzymatic (Proteolytic Enz.), Cellular (low Keratocytes) and Ultrastructural (decrease fibril diameter, disruption of orthogonal arrangement, undulation of collagen lamella)

□<u>Changes with LVC</u>

- Flap vs Flapless techniques.
- Myopic Vs Hyperopic Ablation.

Others:

CCT, Axial length, IOP, Contact Lens Wear

Viscoelastic Nature

Elasticity: Changing shape in response to a pressure, and recovering upon the removal of the pressure.

Viscosity: Resisting change in shape in response to a pressure.

Non Linear Behavior under pressure

> J Refract Sung, 2907 Dec 2108:408-18, doi: 10.3926/1081-597X-28071001-11. Determination of the modulus of elasticity of the human cornea

Ahmed Bahelich 1, Delu Wang, David Pye

The Ocular Response Analyzer (ORA)

the first to measure in vivo (2005)

Dynamic measurement; monitoring the movement of the cornea in response to air puff

CH - Corneal Hysteresis (Viscosity) CRF - Corneal Resistance Factor (Elasticity) IOPG - Goldmann Correlated IOP IOPcc - Corneal Compensated IOP

E05202

CH/CRF

CRF under 8 mm Hg positive (CH / CRF)

Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. Touboul D, Roberts C, Kérautret J, Garra C, Maurice-Tison S, Saubusse E, Colin J. J Cataract Refract Surg. 2008 Apr;34(4):616-22

ORA Signal Analysis

The Oculus Corvis ST

Corneal Visualization Scheimpflug Technology

- Measures corneal deformation in a non-contact mode by a released air puff (pressure:60 mmHg & diameter:3.05 mm).
- Video footage of the corneal deformation is obtained by an Ultra High-Speed (UHS) Scheimpflug camera angled at 45° towards the apex of the cornea.
- 140 cross-sectional images of the cornea in 30 ms (4,330/sec).
- 8 mm horizontal coverage

Applanation 2 Applanation 2 Allongth Highest Concavity Intervention Intervention

Initial State

- 1. Applanation point A1.
- 2. The highest concavity point: the deformation amplitude (DA in mm), peak distance (PD in mm), and the radius of curvature (RC in mm) are measured.
- 3. Applanation point A2.

Name: ID:1	DA Ratio = central deformation divided	Eye: Aight (DD)	Exem Date 21.052014 16 54:37
A	by average of yellow lines	Figure d Deformation	Inverse Radius = 1/radius of Concave Curvature
	ZOCULUS		
Nahar ID: 1	DeffA Ratio = central deflection divided by average	Eyer, Flight (DD)	Exam Date 21.05.2014 16.54:30 HC Radius of Concave Carvature
в	et yellow lines	Corneal Octoberation	
-	Past	Distance (Width or Rending Dist	ancet
32			300 ms

Superimposed frames A: Cornea in the Predeformation phase (pseudocolored blue), at maximal corneal deflection (pseudocolored red), and at maximal whole eye movement (pseudocolored white). B: Correction for whole eye motion by aligning all corneal images in the periphery to that at predeformation

Corvis ST: Clinical Parameters

t= Applanation	Moment at the first applanation of the comea during the air puff (in millseconds). In parenthesis is the length of the applanation at this moment (in milimeters)	
ighest Concavity Moment that the comea assumes its maximum concavity during the air puff (in miliseconds). In parenthesis is the length of the distance between the two peaks of the comea at this moment (in milimeters)		
2 rd Applanation	Moment at the second applanation of the comea during the air puff (in miliseconds). In parenthesis is the lenght of the applanation at this moment (in milimeters)	
Maximum Deformation	Measurement (in milimeters) of the maximum comea deformation during the air puff	
Wing Distance	Length of the distance between the two peaks of the comea at this moment (in milimeters)	
Maximum Velocity (in)	Maximum velocity during the ingoing phase (in meters per secons (m/s))	
Maximum Velocity (out)	Maximum velocity during the outgoing phase (in meters per secons [m/s])	
Curvature Radius Normal	Radius of curvature of the comea in its natural state (in millimeters)	
Curvature Radius HC	Radius of curvature of the comea at the time of maximum concavity during the air puff (in milmeters)	
Cornea Thickness	Measurement of the comeal thickness (in milimeters)	
IOP	Measurement of the intraocular pressure (in milimeters of Mercury [mmHg])	
DAratio 2 mm	Flatio between vertical displacement at apex and at 2 mm	
Inverse concave Radius	Inverse of the Radius of curvature during concave phase of the deformation	
Integrated Radius	Area under the inverse concave Radius vs. time curve	
SP-A1	Parameter reflecting bending stiffness of the comea as defined by force/replacement	
ыор	Biomechanical corrected IOP	
OBI	Corvis Biomechanical Index: overall biomechanical index for kc detection	
TBI	Tomographic Biomechanical Index: combines tomographic and biomechanical data for enhanced ectasia	

CBI

Corvis Biomechanical Index is based on a logistic regression formula including different Dynamic Corneal Response (DCR) parameters, the Stiffness Parameter and the corneal thickness profile.

BEST Display: Homburg Biomechanical E-STaging Display Changes over time

Integration of Tomography and Biomechanics

• Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection

 Renato Ambrósio Jr, MD, PhD; Bernardo T. Lopes, MD; Fernando Faria-Correia, MD; Marcella Q. Salomão, MD; Jens Bühren, MD; Cynthia J. Roberts, PhD; Ahmed Elsheikh, PhD; Riccardo Vinciguerra, MD; Paolo Vinciguerra, MD. Journal of Refractive Surgery. 2017;33(7):434-443

• Tomographic and Biomechanical Index (TBI), which combines Scheimpflug based corneal tomography and biomechanics for enhancing ectasia detection.

Brillouin Scattering Spectroscopy

- Since the 80s
- Interaction between PHOTONS (LIGHT) \$ PHONON (wavelets from molecular vibration wz velocity proportional to biomechanical properties)
- Photons scatter.
- Brillouin doppler spectrum shift indicative of elastic modulus.

Dram.ii

Schwarts of the Bulkson system. The system is compared of three ports. Eight terms, a forcure systematic termfore both on a workfield at A key plattere, and a year angle TWA questionaries using two system A and TWA and the Research and the WPA polarization constraining single-solution (split) and plattere operation (A). In Markowski (A), question standing, N is accoss), OL 1, where the form, PEE polarizing frame-upfitter, 12/141, operaid detries, Both reference assembles, N is accoss), OL 2, where the form, PEE polarizing frame-upfitter, 12/141, operaid detries, Both reference assembles, D is accoss of Q/Q1, operaid down, A (A)(A), subscription and a first (A) operaid detries, V/V2. While, INCCD is accoss on addition and physics (https://www.addition.com/

Brillouin Spectroscopy of Normal and Keratoconus Corneas Theo G. Seller, ^{12,3} Peno Shao,² Amira Eltony,² Theo Seller,¹ and Seok-Hyun Yun²

Depth-Dependent Reduction of Biomechanical Efficacy of Contact Lens-Assisted Corneal Cross-linking Analyzed by Brillouin Microscopy

Hongyuan Zhang, PhD; Mehdi Rombahani, MD; Andre L. Piccinini, MD; Oren Galan, MD; Farbad Hafozi, MD, PhD, FARVO; Giuliano Scarcelli, PhD; J. Bradley Rondleman, MD

Motion tracking

A 3D motion-tracking Brillouin microscope :

- <u>Axial tracking</u> utilized optical coherence tomography (better than 3 μm).
- Lateral tracking _achieved by tracking pupils with digital image processing (up to 10 μm).
- Depth-dependent Brillouin shift with a high spatial resolution.
- High-quality mapping even while the subject is breathing normally.

Motion-tracking Brillouin microscopy for in-vivo corneal biomechanics mapping

Hongyuan Zhang ¹, Lara Asroul ¹, J Bradley Randleman ^{11,2}, Giuliano Scarcelli ³

optical coherence elastography

OCT based

- air puff, acoustic radiation force, or laser pulse.
- Elastic wave -> phase shift- > phase resolved color doppler.
- More accurate
- In depth measurements.

E0S2023

In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances

Yuheno Zhou, Yuanyuan Wano, Melatan Sheo, Zi Jin, Yiheno Chen, Yua Zhou, Jia Ou, and Desi Zhu

To Summarize

- Corneal Biomechanics measurements are crucial in Refractive practice and for screening of population.
- Up till now, Corvis-ST is the most clinically used apparatus with ongoing hardware and software updates.
- The need for In-Depth analysis mandated the development of other methods like Brillion spectroscopy and OC Elastography.

