

## Corneal Biomechanics: Relevance

Biomechanics means the mechanical properties of biological tissue.

The NEED to study Corneal Biomechanics IN VIVO:

- Early Diagnosis of ectatic corneal conditions (KC and post LVC ectasia).
- Follow UP (Progression or after surgery; CXL).
- Screening of THE HIGH RISK population.



## Factors influencing Corneal Biomechanics

## $\square$ Ultrastructure :

## - The anterior stroma:

$50 \%$ stiffer than mid or posterior stroma : a network of highly interwoven collagen lamellae that insert into Bowman's layer.

$\cos 2023$

## Factors influencing Corneal Biomechanics

## Changes with Age:

- Natural age-related crosslinking.


## $\square$ Changes with Diabetes:

- Glycation of proteoglycan increasing crosslinking.


## $\square$ Changes with KC:

- Enzymatic (Proteolytic Enz.), Cellular (low Keratocytes)and Ultrastructural (decrease fibril diameter, disruption of orthogonal arrangement, undulation of collagen lamella)


## $\square$ Changes with LVC

- Flap vs Flapless techniques.
- Myopic Vs Hyperopic Ablation.

DOthers:

- CCT, Axial length, IOP, Contact Lens Wear


## Simplifying Corneal Biomechanics

## - Viscoelastic Nature

Elasticity: Changing shape in response to a pressure, and recovering upon the removal of the pressure.
Viscosity: Resisting change in shape in response to a pressure.

## - Non Linear Behavior under pressure


Determination of the modulus of elasticity of the human cornea


## The Ocular Response Analyzer (ORA)


the first to measure in vivo (2005)
Dynamic measurement; monitoring the movement of the cornea in response to air puff

CH - Corneal Hysteresis (Viscosity)
CRF - Corneal Resistance Factor (Elasticity) IOPG - Goldmann Correlated IOP IOPCC - Corneal Compensated IOP



## CH/CRF



CRF under 8 mm Hg positive (CH / CRF)

## ORA Signal Analysis



NORMAL

## KERATOCONUS



## The Oculus Corvis ST



- Measures corneal deformation in a non-contact mode by a released air puff (pressure:60 mmHg \& diameter:3.05 mm).
- Video footage of the corneal deformation is obtained by an Ultra High-Speed (UHS) Scheimpflug camera angled at $45^{\circ}$ towards the apex of the cornea.
- 140 cross-sectional images of the cornea in $30 \mathrm{~ms}(4,330 / \mathrm{sec})$.
- 8 mm horizontal coverage


1. Applanation point A1.
2. The highest concavity point: the deformation amplitude (DA in mm), peak distance (PD in mm), and the radius of curvature ( RC in mm ) are measured.
3. Applanation point A2.


Superimposed frames A: Cornea in the Predeformation phase (pseudocolored blue), at maximal corneal deflection (pseudocolored red), and at maximal whole eye movement (pseudocolored white). B: Correction for whole eve motion by aligning all corneal images in the periphery to that at predeformation

## Corvis ST: Clinical Parameters

| 1* Applanation | Moment at the first applaration of the comea during the air puff (in miliseconds). In parenthesis is the length of the applanation at this moment (in rniimeters) |
| :---: | :---: |
| Highest Concavity | Moment that the cornea assurnes its maximum concavity during the air puft (in milioeconds) In parenthesis is the length of the distance between the two peaks of the comea at this moment (in milimeters) |
| $2^{\text {st }}$ Applanation | Moment at the second applanation of the comea during the air puff (in mixiseconds). In parenthecis is the lenght of the applanation at this moment (in milimeters) |
| Maximum Deformation | Measurement (in milimeters) of the maximum comea deformation during the air puff |
| Wing Distance | Length of the distance between the two peaks of the comea at thia moment (in milimeters) |
| Maximum Velocity (in) | Maximum velocity during the ingoing phase (in meters per secons [m/s]) |
| Maximum Velocity (out) | Maximum veinoity during the outgoing phase (in meters per secons [m/al) |
| Ourvature Fadius Normal | Aadius of curvature of the comea in its natural atate (in milmeters) |
| Curvature Radius HC | Aadius of curvature of the comea at the time of maximum concavity during the air puff (in milimeters) |
| Oomea Thickness | Measumernent of the comeal thickness fin mifimeters) |
| IOP | Measumernent of the intraccular presture (in milimeters of Mercury [ mmH Hg ]) |
| DAratio 2 mm | Ratio between vertical displacement at apex and at 2 mm |
| Inverse concave Rardius | Inverse of the Raclius of curvature during crnoave phase of the deformation |
| Integrated Radius | Area under the inverse concave Radius va. time curve |
| SP-A1 | Parameter retiecting bending stithess of the comea as detined by forceireplacement |
| bIOP | Biomechanical corrected IOP |
| CBI | Corvis Biornechanical index: overall biomechanical index for kc detection |
| TBI | Tomographic Biomechanical Index: combines tomographic and biornechanical data for enhanced ectasia detection |



## CBI

Corvis Biomechanical Index is based on a logistic regression formula including different Dynamic Corneal Response (DCR) parameters, the Stiffness Parameter and the corneal thickness profile.

OCULUS Corvis@ ST - Vinciguerra Screening Report


OCULUS Corvis® ST - Vinciguerra Screening Report



BEST Display: Homburg Biomechanical ESTaging Display
Changes over time

# Integration of Tomography and Biomechanics 

- Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection

Renato Ambrósio Jr, MD, PhD; Bernardo T. Lopes, MD; Fernando Faria-Correia, MD; Marcella Q. Salomão, MD; Jens Bühren, MD; Cynthia J. Roberts, PhD; Ahmed Elsheikh, PhD; Riccardo Vinciguerra, MD; Paolo Vinciguerra, MD. Journal of Refractive Surgery. 2017;33(7):434-443

- Tomographic and Biomechanical Index (TBI), which combines Scheimpflug based corneal tomography and biomechanics for enhancing ectasia detection.

$\operatorname{EOS} 2023$


## Brillouin Scattering Spectroscopy

- Since the 80s
- Interaction between PHOTONS (LIGHT) \$ PHONON (wavelets from molecular vibration wz velocity proportional to biomechanical properties)
- Photons scatter.
- Brillouin doppler spectrum shift indicative of elastic modulus.


Strani:







Brillouin Spectroscopy of Normal and Keratoconus Corneas
Theoca. Selien. ${ }^{123}$ Peng.Shao. ${ }^{2}$ amira.Eltony, ${ }^{2}$ Theo Seiles, ${ }^{1}$ and Seak-1timin Yun ${ }^{2}$




Emen



Cornea
DEPTH DEPENDENT variations in elastic modulus

Aqueous humor

Depth-Dependent Reduction of Biomechanical Efficacy of Contact Lens-Assisted Corneal Cross-linking Analyzed by Brillouin Microscopy
 Farkod Hafoa, SM, PhD, FARVO, Głullano Scorowll. PhD, f. Brodlay Rondlentan, MD


52023

## Motion tracking

A 3D motion-tracking Brillouin microscope :

- Axial tracking utilized optical coherence tomography (better than $3 \mu \mathrm{~m}$ ).
- Lateral tracking_achieved by tracking pupils with digital image processing (up to $10 \mu \mathrm{~m}$ ).
- Depth-dependent Brillouin shift with a high spatial resolution.
- High-quality mapping even while the subject is breathing normally.


## Motion-tracking Brillouin microscopy for in-vivo corneal biomechanics mapping



## $\cos 2023$



## optical coherence elastography

## - OCT based

- air puff,acoustic radiation force,- or laser pulse.
- Elastic wave -> phase shift- > phase resolved color doppler.
- More accurate
- In depth measurements.


In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances


## To Summarize

- Corneal Biomechanics measurements are crucial in Refractive practice and for screening of population.
- Up till now, Corvis-ST is the most clinically used apparatus with ongoing hardware and software updates.
- The need for In-Depth analysis mandated the development of other methods like Brillion spectroscopy and OC Elastography.

