IMPROVING THE OUTCOME OF LASER PROCEDURES IN GLAUCOMA

AHMED HOSSAM ABDALLA

PROFESSOR OF OPHTHALMOLOGY

ALEXANDRIA UNIVERSITY

LASER PROCEDURES

- Laser treatment for internal flow block
- Laser treatment for outflow obstruction
- Miscellaneous laser procedures

LASER TREATMENT FOR INTERNAL FLOW BLOCK

- Laser peripheral iridotomy
- Laser iridolasty (Gonioplasty)

Iridectomy

- ☐ Pre-treat -- pilocarpine, selective alpha agonists
- ☐ Post-treat -- topical steroids, ocular hypotensives

Iridectomy

- Complications
- Visual disturbance
- IOP spike
- Inflammation
- Bleeding

Considerations

- Location choice
- Ocular hypo.
- Topical steroids
- Laser choice or the use of contact lens

LASER TREATMENT FOR OUTFLOW OBSTRUCTION

- Argon laser trabeculoplasty
- Selective laser trabeculoplasty

SLT

- Selective laser trabeculoplasty
- Non-thermal laser
- Q-switched frequency doubled (523) Nd.YAG laser
- Selectively targets and irradiates only the pigmented cells in the trabecular meshwork with no collateral damage to the underlying structures

Contact Placement

- NO magnification (1X only)
 - Latina SLT
 - Goldmann 3 mirror
 - Ritch
- Changes in magnification will alter beam diameter and energy

Preoperative Medications?

- Alpha agonists
- Topical anaesthesia

Postoperative Medications

- Alpha agonists for 48 hours
- Avoid the use of steroids
- Topical NSAID if needed

How long after treatment is the optimum pressure reduction reached?

- Usually observed after one day
- 8 10 % are slow/late responders, response may be seen 4 − 12 weeks

Laser Cyclophotocoagulation

Background

 The first cyclodestructive laser procedure was performed by Beckman and colleagues in 1972, and since then various other cyclodestructive procedures have been implemented

Background

Year	Author	Type of laser	
1989	Brancato et al	Nd :YAG laser (1064 nm)	
1992	Gaasterland et al	Semiconductor diode laser (810 nm)	
1992	Uram	Endoscopic Cyclophotocoagulation	
2010	Tan et al	Micropulse diode laser	

Laser Cyclophotocoagulation

Trans - Scleral

Contact trans-scleral CPC (TSCPC)
Micropulse CPC (MPCPC)

Endocyclophotocoagulation (ECP)

Contact Trans-scleral CPC

- Using the continuous wave is the common way of delivery
- It is effective for all the forms of glaucoma
- It is often used as a treatment of last resort because of the risk of morbidity and hypotonic, visual disturbance and even phthisis bulbs.

Parameters

- Duration: 2000 millisecond
- Power: 2000 mW
- Power increased or decreased by 250 mW
- 5 6 spots /quadrant. 20 24 spots over 360 degrees

CPC

- Success of TCP in lowering IOP is tempered by significant complication rate rates by 10 years:
 - Visual loss of two or more lines occurred in 75 % of eyes
 - Pthisis occurred in 3 % of eyes
 - 5 eyes with initial visual acuity counting fingers lost light perception (7%)

Improving Outcome

Modified parameters of Trans scleral cyclophotocoagulation

Micropulse (Subcyclo) cyclophotocoagulation

Endocyclophotocoagulation

Modified Parameters

Duration: 4000 millisecond

Power: 1250 mW

- Power increased or decreased by 150 mW
- 6 spots /quadrant. 18 24 spot over 360 degrees

Modified Parameters

- Results:
 - Used as primary surgical treatment in POAG
 - IOP
 - Decreased by 20 % in 47 % of treated eyes
 - 22 mmHg or less in 48% of treated eyes
 - Vision: 77 % same or better
 - Cyclodestructive procedures in treatment of Glaucoma. Anjana P et al. June 2019

New Procedure

Micropulse cyclophotoagulation

Subcycloprocedure

Difference in mechanism of action

TSCPC	MPCPC		
Targets pigmented CB epithelium and storma,including vascular core, to suppress aqueous production	Low grade CB inflammation and thermal insult hypothesized to . Reduce aq production . Enhance uveoscleral outflow Activate cellular biochemical cascade		
Results in diffuse coagulative tissue damage	Allows final control of thermal effect on CB epithelium		

MPCPC

- An alternative which administers a series of repetitive short pulses of laser energy separated by rest periods, and it is unlike CWCPC which delivers continuous high intensity energy to the ciliary body.
- MP is applied using customized probe that is used to apply the laser in a continuous painting fashion, rather than individual burns, and rather to pars plans than pars plicate

Parameters

- Power: 2000 mW
- Location: 3 mm behind the limbus
- Probe moved in a painting like fashion from 10:30 to 2:30 clock hours superiorly and from 3:30 to 8:30 inferiorly
- Exposure time was 80 seconds per semi-circumference with a duty cycle 31.3 %
- The probe is held perpendicular to the limbus

Parameters

MPCPC

- Mechanism of action still unclear
- It is hypothesized that inflammation of the ciliary body reduce aqueous formation and possibly enhance uveoscleral outflow
- UBM after MPC
 - No anatomical damage or visible lesion in ciliary body
 - Thin space between sclera and ciliary body which may correspond to presence of suprachoroidal fluid

MPCPC

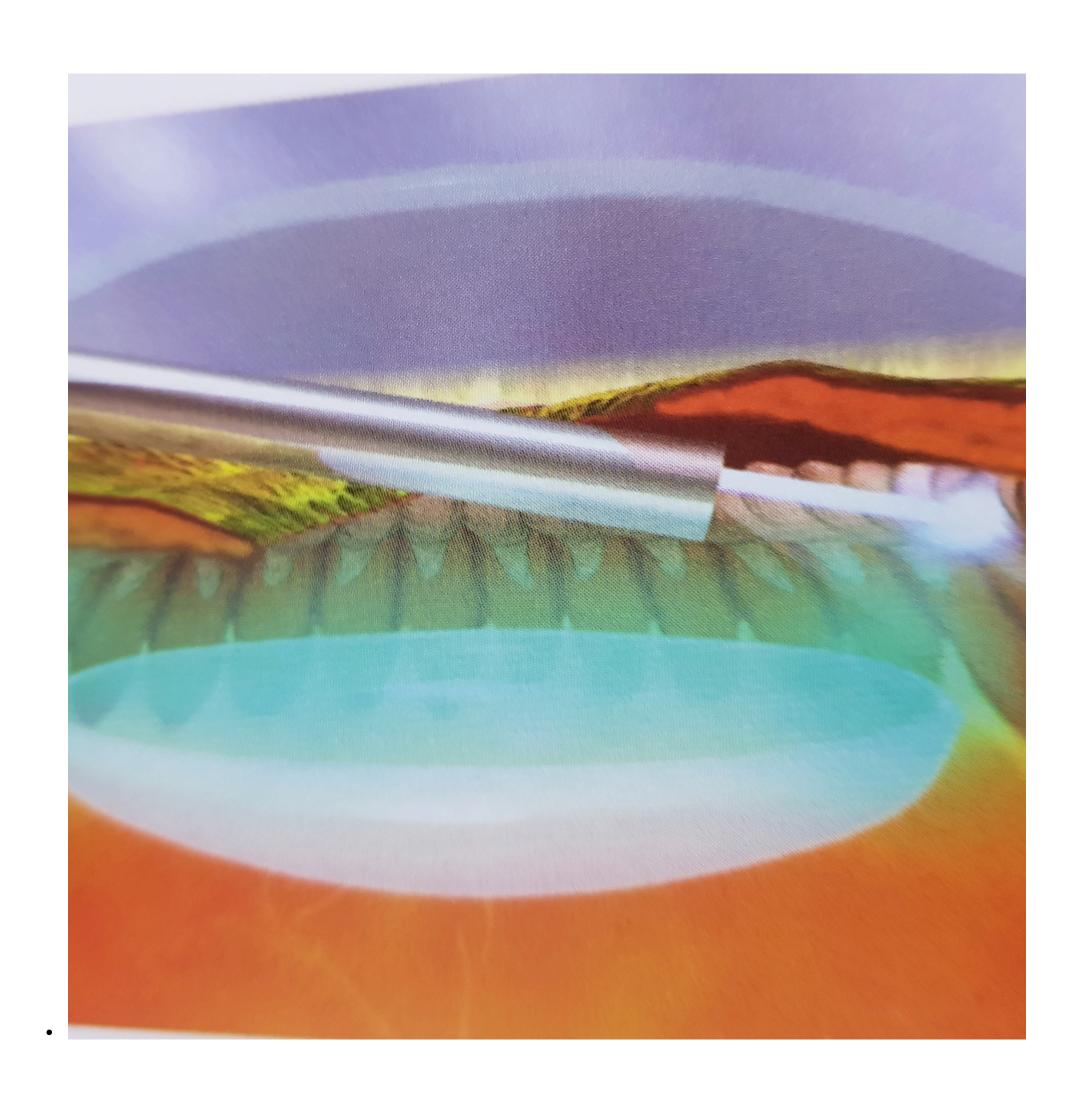
- Indicated for most types of glaucoma:
 - POAG
 - PACG
 - Pseudoexfoliation
 - NVG
 - Steroid induced glaucoma
 - Uveitis
 - After PKP

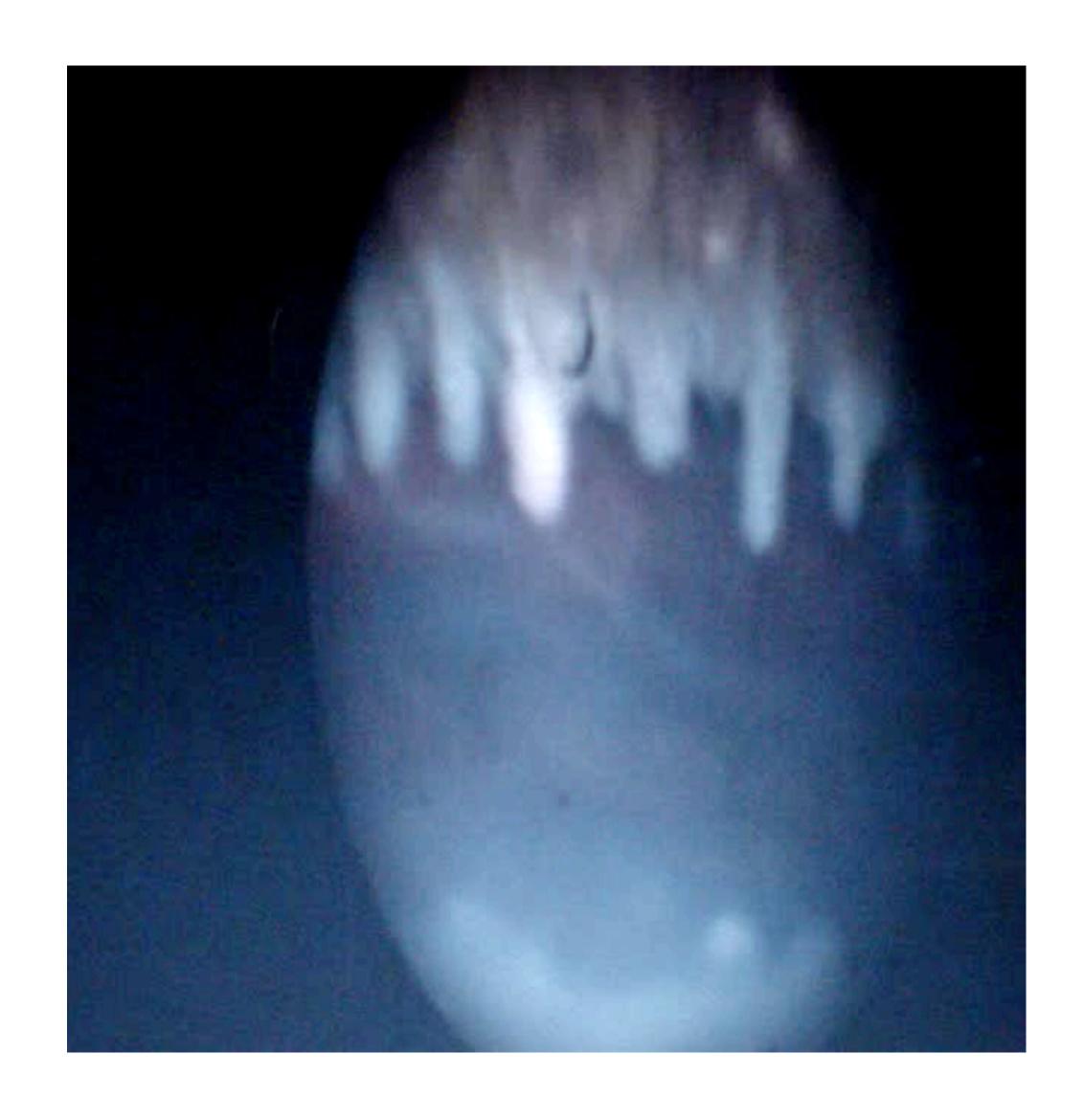
Results of the procedure

- Reduction of mean IOP from 27.7 mmHg. To 16.3 mmHg. With 41.2 % reduction
- Reduction of mean medication from 3.3 pre-op to 2.3 post-opM

Micropulse cyclophotoagulation: Initialresults in Refractory Glaucoma Emanuel et al . Glaucoma 2017

Results of the procedure


- Reduction of IOP 30 % from baseline and below 21 mmHg.
- Reduction of mean number of medications from 3.4 pre-op to 2.9 post op


Yves Lokhur and Nassuria Bentratch. Glaucoma institute, Saint Joseph Hospital Paris

Endocyclophotocoagulation

- Can be done in phakic, pseudophakic and aphakic eyes
- Limbal approach is used in phakic eyes while pars-plana approach is preferred in aphasic and pseudophakic eyes since there is better visualization of ciliary processes
- The goal of the laser application is to whiten and shrinks the ciliary process
- The entire ciliary procedure should be treated
- ECP can be combined with phacoemulsification

Endocyclophotocoagulation

Thank you for your attention

Endocyclophotocoagulation

- In a study of 68 eyes with refractory glaucoma that underwent ECP, the mean IOP reduced from 27.7 mmHg. To 17.0 mmHg. (34% reduction)
- The number of glaucoma medications decreased from 3 to 2
- The mean follow-up period was 12.9 months
- Ninety percent of eyes had IOP less than 22 mmHg. At the last follow up period
 - Chen J et al.Endoscopic photocoagulation of the ciliary body for the treatment of refractory glaucomas. Am J Ophthalmol 1997;124(6):787-796

Thank you For your attention