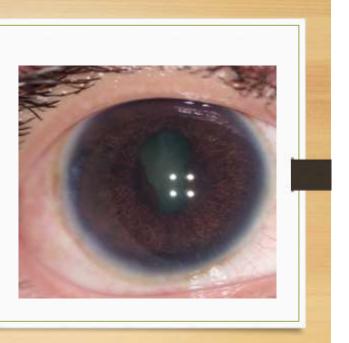
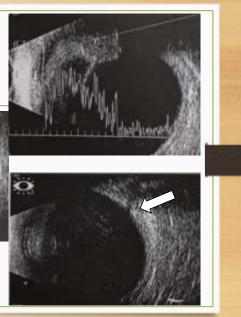

From a lamb to a beast A scary tale

Islam Youssef Swaify, MD, MRCSed Assistant lecturer of Ophthalmology Faculty of Medicine, Cairo University

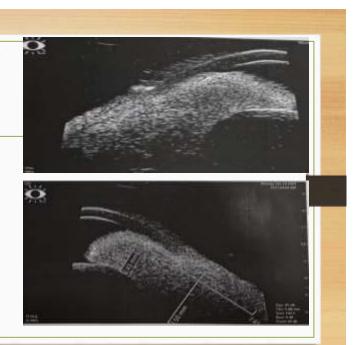

On examination

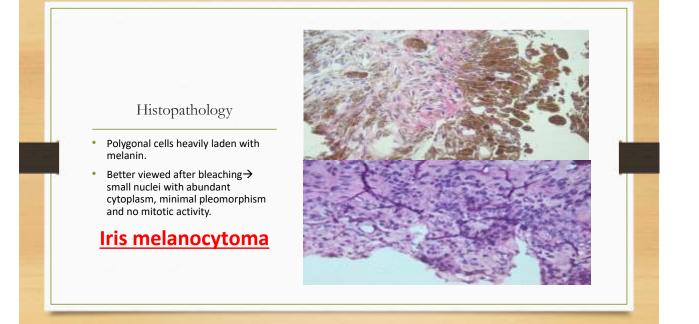
	OD	OS	
BCVA	6/60	6/9	
Refraction	-0.75/-1.25x135	-0.25/-0.75x55	
EOM	Free	Free	
Anterior. Segment	5555	Free	
Fundus	Hazy view C/D= 0.7	Normal Fundus C/D= 0.4	
IOP	20 mmHg	16 mmHg	

So, what's your differential diagnosis?

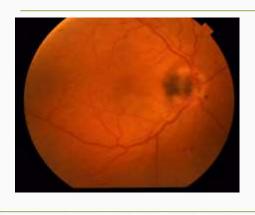

- Iridociliary melanoma.
- Diffuse iris nevus.
- Iris cyst.
 - Iris pigment epithelium cyst.
 - Epithelial inclusion cyst.
- Others \rightarrow Uveitis.

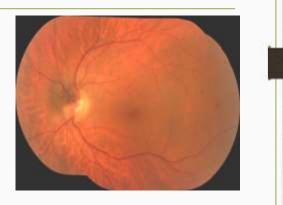
US


- Opaque displaced lens by temporal ciliary body mass.
- Retina in place
- Evidence of large deep optic disc cup +/- 0.7

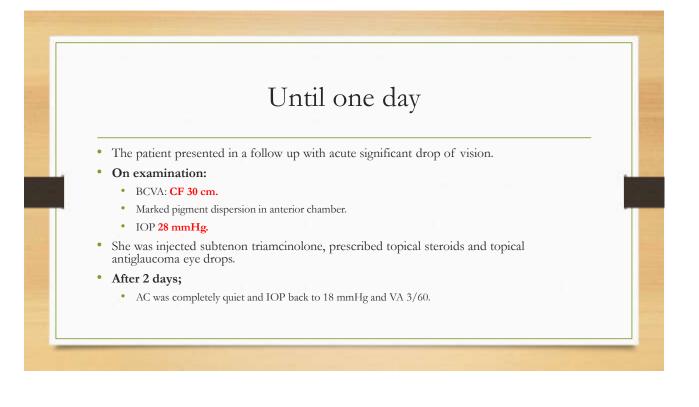

UBM

- Iridociliary mass extending temporally from 6 o'clock to just before 12 o'clock.
- Indenting the lens, infiltrating zonules.
- Dimensions:
 - Transversely: 7.6 mm.
 - Vertically: <u>**2.4 mm** (Iris</u>), <u>**3.5 mm** (CB</u>).
- Occluded superior and temporal angles.
- No extrascleral extension.





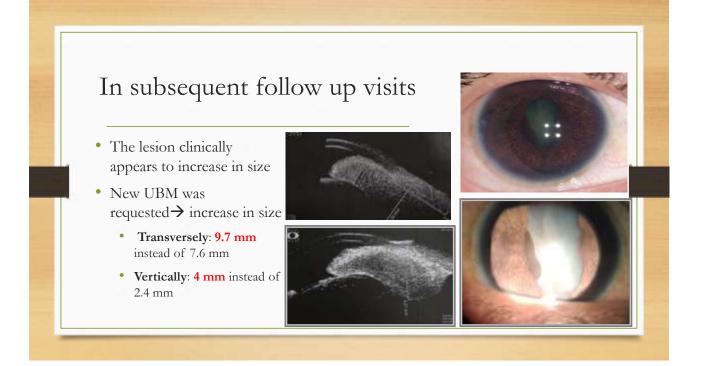
- First described by Zimmerman and Garon in 1964, as a variant of melanocytic nevus.
- Cogan suggested magnocellular nevus as a better descriptive term.
- Originally described for optic nerve melanocytoma but can develop anywhere in the uveal tract.
- In a series of 2510 cases with iris tumors \rightarrow only 3% were melanocytoma.
- Diagnostic challenge \rightarrow mimics uveal nevi and malignant melanoma.



- Mean age: 36 years but some cases were reported in children.
- More common in females.
- Dark brown or black lesion with corrugated friable surface → satellites on iris surface (53%), trabecular meshwork(40%).
- Composed of deeply pigmented plump or polygonal cells with abundant cytoplasm and small round uniform nuclei
 - Type 1 melanocytoma cells: large polyhedral cells with giant melanosomes (1 to 5 $\mu\pi\iota$) and few cytoplasmic organelles
 - Type 2 melanocytoma cells consisted of small spindle-shaped cells with infolded nuclei, conspicuous nucleoli, small melanosomes (0.3 to 1.0 μπι), and abundant cytoplasmic organelles.

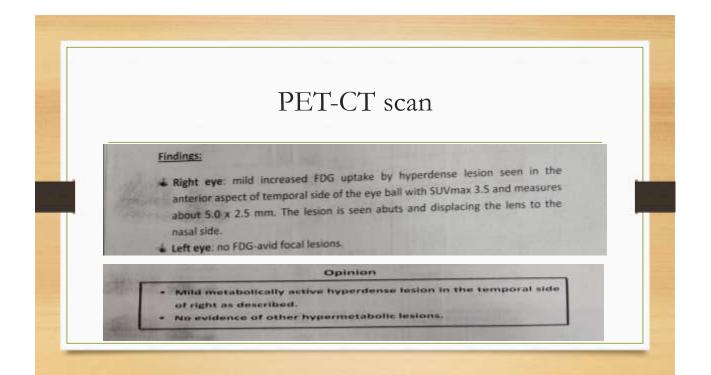
• Metastatic work up was done \rightarrow insignificant

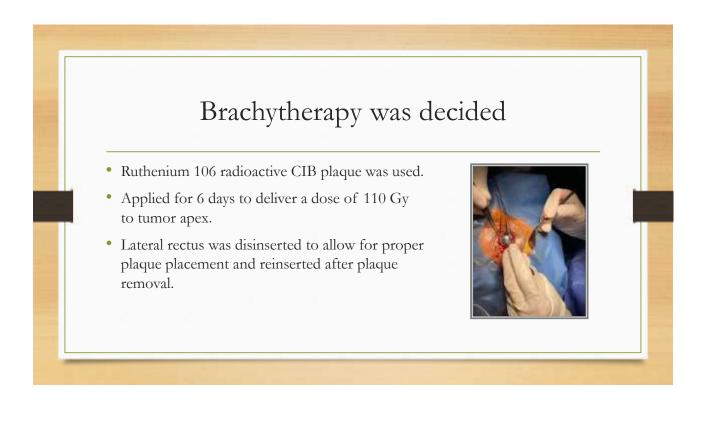
- CT Brain
- CT Chest
- CT Abdomen and Pelvis
- Liver enzymes
- · Patient was scheduled for monthly follow up
 - For 6 months → the condition was stationary but cataract was gradually increasing in density


So, what happened?

• Spontaneous necrosis → pigment dispersion → free pigment or pigmentladen macrophages accumulate in TM → obstruction of aqueous outflow

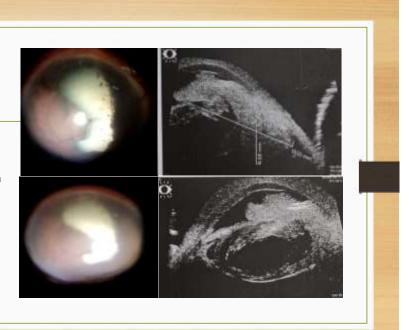
Melanocytomalytic Glaucoma


Melanocytomalytic glaucoma


- · Commonly associated with iridociliary melanocytoma.
- Suggested to occur secondary to interruption of intrinsic blood supply with high metabolic activity and friable surface → areas of necrosis with pigment dispersion.
- In a series of 47 cases of iris melanocytoma, elevated IOP in 11% at 5 years and 50% at 15 years
- Other mechanisms for IOP elevation.

- Melanocytoma is a relatively stationary lesion→ growth occurred in 23% of the patients at 5 years and 48% at 10 years.
- Subtle enlargement does not necessarily imply malignant change, but more profound and rapid growth is generally considered a sign of malignant transformation into melanoma.
- Only few cases of iris melanocytoma are reported to have undergone malignant transformation.

	Serial follow up initial marked re	
Before plaque	After 6 weeks	After 3 months
0.7 mm	5.58 mm	5.47 mm
4.07 mm	2.04 mm	2.32 mm


	Serial follow up U but unfortunate	
After 3 months	After 4 months	After 5 months
5.47 mm	8.53 mm	10.55 mm
2.32 mm	3.14 mm	4.68 mm

5 months after brachytherapy

- VA: dropped to HM
- Mass increased markedly in size
- Total lens opacity with subluxation
- IOP: **30 mmHg**

So after counselling the patient;

Enucleation of the right eye was done

Histopathology

- Malignant epithelioid and polygonal tumor cells with abundant melanin showing nuclear pleomorphism
- Strong membranous <u>HMB45 staining</u> indicating melanocytic lesion
- Strong nuclear staining of <u>Ki67</u> ndicating a high proliferative index of the tumor cells.

DIAGNOSIS Indeclary mass. Right eye enucleation. Used malignant melanoma on top of preexisting melanocytoma, epithelixed cell type, grade II. Free optic nerve margin e12.

Back to literature Management of iridociliary melanocytomas

- <u>Watchful observation</u> \rightarrow small stationary lesion.
- <u>Local resection</u> \rightarrow lesions < 3 clock hours.
 - Significant pigment seeds.
 - Uncontrolled elevated IOP.
 - Significant tumor growth or suspected tumor growth.
- Brachytherapy
- Enucleation
 - Blind painful eye.
 - Malignant transformation.

- Melanocytomalytic glaucoma, pigment dispersion and seeding are common.
- In spite of being benign, watchful follow up is a must → you don't know when malignant transformation will happen.
- Don't hesitate in taking tough decisions → Enucleation can save a patient's life when other ways fail.

Acknowledgment • Ocular oncology team. • Special thanks to: Dr. Randa Saaed

Pathology department, Faculty of medicine, Cairo University

