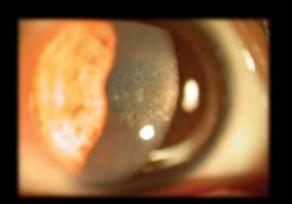


Post-PRK Haze

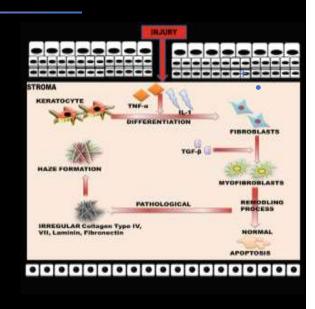
- Laser vision correction (LVC) surgery: 3% of the general population per year.
- PRK was the first use of excimer laser for the correction of refractive errors.
- LASEK, epi-LASIK, and tPRK are other surface ablation techniques of LVC.
- Post-PRK haze is a common side effect after corneal surface ablation.
- Significant haze is seen in less than 5% of the cases.


Post-PRK Haze

- Definitions:
 - ► A decrease in tissue transparency
 - ► Loss of corneal clarity
 - >A subepithelial stromal opacity

Post-PRK Haze

- Clinically:
 - Completely asymptomatic (most cases)
 - Symptoms:
 - Night vision problems (Starbursts)
 - Ghost images, polyopia (irregular astigmatism)
 - Refractive regression (progressive visual deterioration)


Clinically insignificant Most eyes Small % of eyes Lasts for up to 1–2 years after surgery. (less than 0.5–4%)

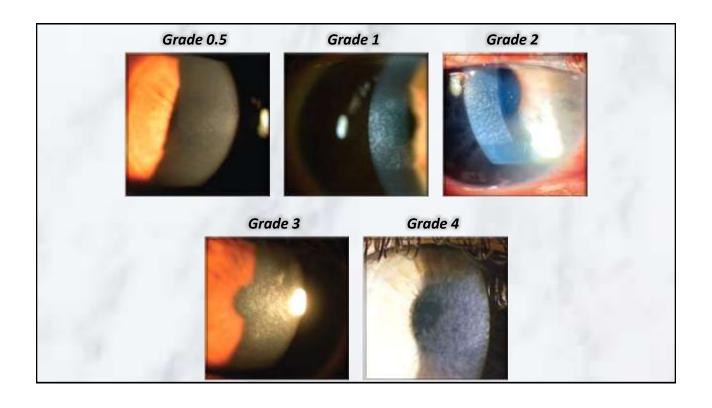
<u>Transitory haze</u>	<u>Late haze</u>
More common	• Less common
Rarely associated with clinical symptoms	 May compromise vision: Decreased corneal transparency Myopic regression
Noted between 1 and 3 months postoperatively	 Initially a clear cornea postop. Haze appears between 2 and 5 months postop.
Disappears within the first year after surgery	 Resolves over time It may stay longer and may persist for up to 3 years
 Related to: Depth of ablation Quality of laser ablation 	No known risk factors

• End stage of a series of events secondary to corneal epithelial and stromal injury • Surgical trauma with disruption of the BM & apoptosis/necrosis of the surrounding corneal cells will result in keratocyte activation and further transformation into fibroblasts. STROMA NERATOCYTE THE-WILLIAM COLLAGE OF THE PATHOLOGICAL PROPERS PATHOLOGICAL PROPERS PATHOLOGICAL PROPERS PATHOLOGICAL PROPERS PATHOLOGICAL PROPERS PATHOLOGICAL PROPERS PATHOLOGICAL APOPTOSIS

Pathogenesis

- <u>Fibroblasts migrate centripetally to the site</u> of injury and:
 - 1. Lay down ECM
 - 2. Transform into myofibroblasts
 - 3. Lay collagen
 - 4. Irregularity of the stromal surface.

Risk Factors 1. Depth of ablation (>80 μm) 2. Diameter of ablation (<6 mm) 3. High levels of correction (>6 D) 4. Proximity of ablation to the corneal periphery 5. Slope of wound surface over the entire area of ablation


Risk Factors

- 6. Irregularity of post-op stromal surface
- 7. Tear fluid TGF-8 levels
- 8. Residence close to the equator
- 9. Other factors:
 - Ablation of Bowman's layer
 - Length of time required for epithelial defect healing
 - Laser type (more with broad beam)

Clinical Assessment

(Slit lamp Grading)

<u>Grade</u>	Slit Lamp Appearance
0	No haze, completely clear cornea
0.5	Trace haze seen with careful oblique illumination
1	Haze not interfering with the visibility of iris details
2	Mild obscuration of iris details
3	Moderate obscuration od the iris and lens
4	Complete opacification of the stroma in the area of the scar

Clinical Assessment

- Objective assessment:
 - 1. Scheimpflug anterior segment analysis system
 - 2. Confocal Microscopy
 - 3. Forward scattered light meter (Van den Berg stray light meter)

Prevention

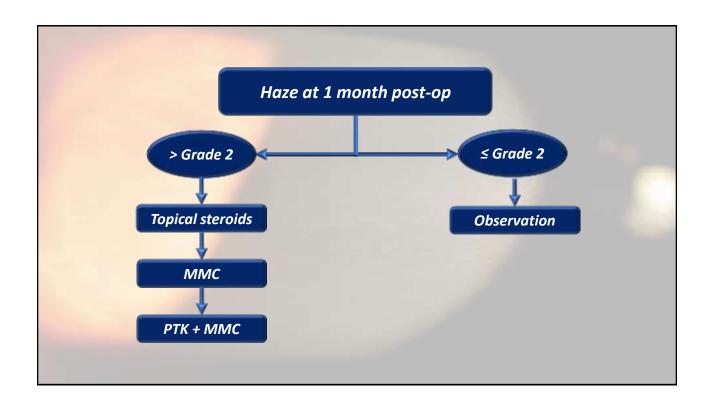
1. MMC (0.2 mg/ml or 0.02%):

- An antibiotic derived from streptomyces caespitosus.
- It cross-links DNA (Inhibiting DNA & RNA replication and protein synthesis)
- Rapidly dividing cells are more sensitive to its action, and therefore:
 - Inhibits proliferation of corneal epithelial & stromal cells.
 - Induces keratocyte apoptosis and can lead to myofibroblast death
- Used to prevent haze formation after PRK for high myopia since 1991

Prevention

1. MMC (0.2 mg/ml or 0.02%):

- Applied to the corneal surface for a maximum of 2 min, followed by copious irrigation with BSS.
- · Complications:
 - 1. Failure to eliminate haze.
 - 2. Late corneal melting and keratectasia.
 - 3. Recurrence of Haze.


Prevention

2. Vitamin C:

- Vitamin C (ascorbic acid) minimizes the damage produced by UV excimer laser and reduces keratocyte activation.
- Oral supplementation might have a prophylactic effect in decreasing haze development after PRK.

Control and Treatment 1. Topical Corticosteroids 2. MMC 3. PTK + MMC

Take Home Messages

- 1. Postoperative haze should be graded. Grades ≤2 require only observation.
- 2. More advanced stages, more aggressive treatment is necessary.
- 3. Topical steroids can be used effectively.
- 4. MMC can adequately prevent and treat haze
- 5. Redo surgery with MMC is the last resort.

