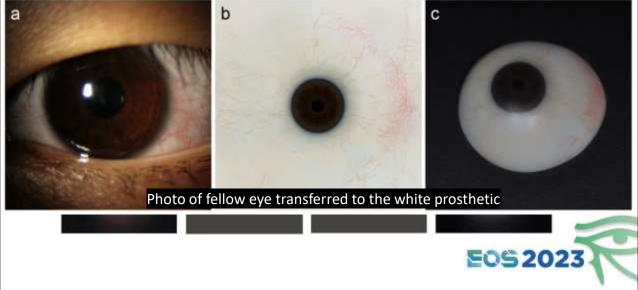


Disclosures

• No financial / conflict of interest disclosures



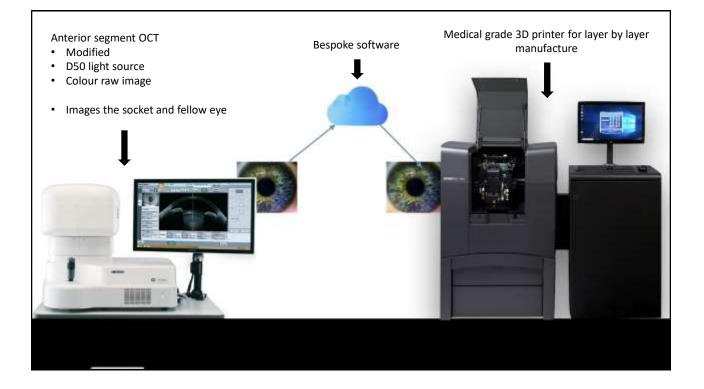
DRBKT 2017, VOL. 36, NO. 4, 223–227 http://dx.doi.org/10.1080/01676830.2017.1287741	Taylor & Francis
CLINICAL RESEARCH	
An innovative method of ocular prosthesis fa printing technology: A pilot study	fabrication by bio-CAD and rapid 3-D
Md. Shahid Alam ^a , M. Sugavaneswaran ^b , G. Arumaikkannu ^b , a	and Bipasha Mukherjee
*Department of Orbit, Oculoplasty, Reconstructive & Aesthetic Services, Sank *Department of Manufacturing Engineering, College of Engineering, Anna U	
Impression wax model of socket	f wax model Computer assisted design of prosthesis
	Converted into printable file by oftware
Iris and sclera hand painted	E05 2023

Semi-automated fabrication of customized ocular prosthesis with three-dimensional printing

E05202

E052023

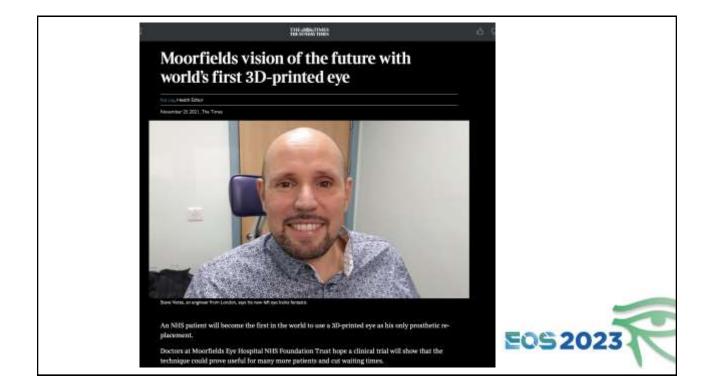
Purpose


- To report the technique and outcomes of
 - non-invasive
 - fully digital
 - end to end "no touch" process
- Design and manufacture of 3D printed ocular prostheses
- 10 patients

The digital process is:

- 1. Anterior segment optical coherence tomography scans (AS-OCT; Tomey Cassia II, Japan) of
 - anophthalmic socket
 - AS-OCT and colour image of the fellow eye
- 2. Software to generate a 3D printed file
- 3. 3D printed ocular prosthesis

Outcomes assessed included fit, function (prosthesis motility), cosmesis and socket complications.



E05202

Results

- November 2021 to June 2022
- 10 patients have received the fully digitally manufactured 3D printed prosthetic
- AS-OCT imaged the sockets successfully in all 10
- No adverse events in 9/10 patients
- 1/10 discomfort with the fit, eyelid swelling for 1 day and mild eye socket inflammation
- No implant extrusion, exposure or infections
- All 10 patients reported prosthesis motility and cosmesis were acceptable

Conclusion

- A fully digital end to end "no touch" 3D printed artificial eye can be made with AS-OCT as the template of the socket and fellow eye
- Mimics the fellow eye
 - Colour match
 - Size, shape and position of the iris and pupil
 - Conjunctival vessel pattern
- No serious adverse events only 1 mild socket inflammation
- Acceptable ocular prosthetic motility and cosmesis.
- Click2Print Artificial Eyes (Click2Print)
- ClinicalTrials.gov
- NCT05093348

References

- Tsui, J.K.S., et al., Applications of three-dimensional printing in ophthalmology. Surv Ophthalmol, 2022.
- Tengroth, B., [The history of the artificial eye]. Nord Medicinhist Arsb, 1992: p. 121-5.
- Martin, O. and L. Clodius, The history of the artificial eye. Ann Plast Surg, 1979. 3(2): p. 168-71.
- Lubkin, V. and S. Sloan, Enucleation and psychic trauma. Advances in ophthalmic plastic and reconstructive surgery, 1990.
 8: p. 259-262.
- Ruiters, S., et al., Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis. British Journal of Ophthalmology, 2016. 100(7): p. 879-881.
- Alam, M.S., et al., An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study. Orbit, 2017. 36(4): p. 223-227.
- Ko, JS., et al., Semi-automated fabrication of customized ocular prosthesis with three–dimensional printing and sublimation transfer printing technology. Scientific Reports, (2019) 9:2968

E052023

