Ultrasound Cycloplasty – UCP
a new paradigm in glaucoma management?

David Cordeiro Sousa
Hospital Santa Maria, Lisbon, PT

FINANCIAL DISCLOSURE: C

INTRODUCTION

•
 #1 cause of irreversible blindness worldwide ➔ over 8 million people

• Main modifiable risk factor ➔ Intraocular Pressure (IOP)

• Medical therapy vs. Surgery

Cochrane Database Syst Rev. 2012 Sep 12;(9):CD004399
INTRODUCTION

AIM

METHODS

KEY RESULTS

CONCLUSIONS

ACKNOWLEDGMENTS

Ultrasound Cycloplasty – a new paradigm in glaucoma management?

Use of Ocular Hypotensive Medications in Portugal: PEM Study: A Cross-sectional Nationwide Analysis

David Cordeiro Sousa, MD,† Inês Leal, MD,*,† Nilton Nascimento, BSc,‡ Carlos Marques-Neves, MD, PhD,*,† Anja Tuulonen, MD, PhD,§ and Luís Abegão Pinto, MD, PhD**

• 231,634 patients under Glaucoma drops: ~2.3% prevalence
• Around 15-20% of the patients can be under 3/+ topical drugs!
• Surgical ?!

<table>
<thead>
<tr>
<th></th>
<th>1 Class</th>
<th>2 Classes</th>
<th>3 Classes</th>
<th>4 Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (%)</td>
<td>54.4</td>
<td>24.9</td>
<td>15.4</td>
<td>3.7</td>
</tr>
</tbody>
</table>

• Around 15-20% of the patients can be under 3/+ topical drugs

<table>
<thead>
<tr>
<th></th>
<th>1 Class</th>
<th>2 Classes</th>
<th>3 Classes</th>
<th>4 Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients (%)</td>
<td>54.4</td>
<td>24.9</td>
<td>15.4</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Egypt

95 M population
300,000 Patients

• Filtering surgery:
 o Steep learning curve
 o Surgeon-dependent
 o Intra & post-operative complications
 o High number of visits/re-interventions
 o Quality of life

Cochrane Database Syst Rev. 2012 Sep 12;(9):CD004399
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

INTRODUCTION

AIM
METHODS
KEY RESULTS
CONCLUSIONS
ACKNOWLEDGMENTS

Increase Aqueous Humor Drainage

Decrease Aqueous Humour Production

Creating a fistula to the subconjunctival space

Ciliary body procedures

Trabeculectomy

AH Drainage device

Cryoapplication

UCP

Focused Ultrasound:
The technology behind the scene

High Frequency Focused Ultrasound enables:
- **Precision** through ultra-small spot size
- **Controlled** temperature-time curve
 - → **Targeting** accurately
 - → **Sparing** surrounding tissues
Concept and technology

High intensity focused ultrasound (HIFU)

HIFU & TSCPC temperature evolution

Transducer → Focal Zone

Temperature → Distance

Advantage of HIFU: selective heating

Focal zone

Before and after the focal zone: no heating, no damage
At the focus: fast, elevated titratable (60-85°C), and very localized heating
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

INTRODUCTION

Aim:

- **Oncological:**
 - Bone metastases
 - Prostate cancer
 - Breast cancer
 - Liver cancer
 - Pancreatic cancer
 - Soft tissue cancer
 - Bone cancer
 - Brain cancer
 - Head & neck cancer
 - Melanoma
 - Thyroid cancer
 - Cervical cancer
 - Lung metastases
 - Neuroblastoma, pediatric
 - Bladder cancer
 - Cancer pain
 - Colorectal cancer
 - Esophageal cancer
 - Lung cancer
 - ovarian cancer

- **Urological:**
 - Retroperitoneal hyperplasia
 - Prostate cancer
 - Kidney cancer
 - Renal stones
 - Acute kidney injury
 - Acute tubular necrosis
 - Bladder cancer
 - Ureteroscopy

- **Women’s Health:**
 - Uterine fibroids
 - Breast cancer
 - Breast carcinomas
 - Uterine adenomyosis
 - Tired pregnancy
 - Cervical cancer
 - Pelvic surgery
 - Bilateral renal artery stenosis
 - Ovarian cancer
 - Polycystic ovary syndrome

Musculoskeletal:

- Bone metastases
- Back pain, facet joints
- Osteoid osteoma
- Back pain, sacroiliac
- Bone cancer
- Bone tumors, benign
- Osteoarthritis
- Disc degeneration
- Muscle atrophy
- Spinal cord injury

Development stage

- Conceptual
- Pre-clinical
- Abodental
- Pilot Trials
- Phase I Trials
- Phase II Trials
- Phase III Trials
- US Harmonisation

Device Characteristics (EyeOp1®)

- Frequency: 21 MHz
- Treatment Duration: 8 seconds per sector
- 6 sectors – 160°
- Acoustic Power: 2 – 3 W
- Temperature at the ciliary body: ± 80°C

Creation of six precise circumferential thermal lesions in the ciliary body.
INTRODUCTION

AIM

METHODS

KEY RESULTS

CONCLUSIONS

ACKNOWLEDGMENTS

Ultrasound Cycloplasty – a new paradigm in glaucoma management?

The concept: *Ultrasound beams are focused on ciliary body.* Good positioning is critical to ensure good targeting of the ciliary body.

![Image of ciliary body](image1.jpg)

Creation of six precise circumferential thermal lesions in the ciliary body.

Ultrasound Cycloplasty – a new paradigm in glaucoma management?

![Image of ultrasound effects](image2.jpg)

Image showing ultrasound effects on the ciliary body.
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>AIM</th>
<th>METHODS</th>
<th>KEY RESULTS</th>
<th>CONCLUSIONS</th>
<th>ACKNOWLEDGMENTS</th>
</tr>
</thead>
</table>

Diode laser

UCP

Lim KJ. European Ophthalmic Review. 2017;11(1):35-9

<table>
<thead>
<tr>
<th>Key Procedure Steps</th>
</tr>
</thead>
</table>

12

13
Additional mechanism of action… **Increased Outflow**

Linear or oval-shaped hyporeflective spaces are evident in the middle stromal layers.
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

INTRODUCTION

Additional mechanism of action… *Increased Outflow*

Mastropasqua R et al., BJO 2016;100:1668-75

Microcysts in the conjunctiva

Widened uveo-scleral pathway in the treated area
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

To analyze safety and efficacy of HIFU cycloplasty using EyeOP-1® device
Ultrasonic Cycloplasty – a new paradigm in glaucoma management?

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>AIM</th>
<th>METHODS</th>
<th>KEY RESULTS</th>
<th>CONCLUSIONS</th>
<th>ACKNOWLEDGMENTS</th>
</tr>
</thead>
</table>

- Glaucoma patients with uncontrolled IOP despite optimal medication were consecutively scheduled for HIFU treatment and followed up regularly

- Primary efficacy outcome: **IOP reduction**

- Safety outcome: **adverse events**

- Statistical analyses: STATA v14.1

Ultrasonic Cycloplasty – a new paradigm in glaucoma management?

<table>
<thead>
<tr>
<th>INTRODUCTION</th>
<th>AIM</th>
<th>METHODS</th>
<th>KEY RESULTS</th>
<th>CONCLUSIONS</th>
<th>ACKNOWLEDGMENTS</th>
</tr>
</thead>
</table>

- **Surgical protocol:**
 - Certified physician
 - Retro/peribulbar anesthesia (5cc lidocaine+ropivacaine)
 - Post-operative dexamethasone 4x/day 4 weeks

2'28'”
Overview

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td>41</td>
</tr>
<tr>
<td>Age, years (mean ± SD)</td>
<td>69 ± 15</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>22 (54)</td>
</tr>
<tr>
<td>Right eyes, n (%)</td>
<td>23 (56)</td>
</tr>
<tr>
<td>Baseline visual acuity, logMAR (mean ± SD)</td>
<td>0.51 ± 0.66</td>
</tr>
<tr>
<td>Pseudophakic, n (%)</td>
<td>26 (65)</td>
</tr>
<tr>
<td>Follow-up, months (mean ± SD)</td>
<td>13.2 ± 3.8</td>
</tr>
</tbody>
</table>

Glaucoma etiology

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary open-angle, n (%)</td>
<td>20 (49)</td>
</tr>
<tr>
<td>Secondary, n (%)</td>
<td>11 (27)</td>
</tr>
<tr>
<td>Neovascular, n (%)</td>
<td>2 (5)</td>
</tr>
<tr>
<td>Primary angle closure, n (%)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Secondary angle closure, n (%)</td>
<td>4 (10)</td>
</tr>
<tr>
<td>Juvenile, n (%)</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

INTRODUCTION

AIM

METHODS

KEY RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>D1</th>
<th>M1</th>
<th>M3</th>
<th>M6</th>
<th>M12</th>
<th>M18</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>41</td>
<td>40</td>
<td>37</td>
<td>25</td>
<td>19</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Drops (n)</td>
<td>2.8</td>
<td>2.7</td>
<td>2.7</td>
<td>2.4</td>
<td>2.2</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Diamox® (n)</td>
<td>0.3</td>
<td>0.03</td>
<td>0.05</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Intraocular pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2 ± 7.9 mmHg</td>
<td>-39%</td>
<td>-38%</td>
<td>-38%</td>
<td>-34%</td>
<td>-36%</td>
<td>-41%</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

ACKNOWLEDGMENTS

Five (12%) failures

- Off-target IOP → need for filtering surgery (Trab or Tube)

Adverse Events

- Minor (e.g. mild anysocoria, hyporeactive iris, hyperemia, foreign body sensation, scleral marks, ...)
- Major → 1 case of severe hypotonia (uveitis patient)
INTRODUCTION

Ultrasound Cycloplasty – a new paradigm in glaucoma management?

Other studies

<table>
<thead>
<tr>
<th>Study</th>
<th># Pts</th>
<th>Glaucoma type</th>
<th>Follow-up</th>
<th>Method</th>
<th>Efficacy Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denis et al. (2015)</td>
<td>12</td>
<td>Refract.</td>
<td>12</td>
<td>Prosp. Multic.</td>
<td>IOP Baseline: 29.0 ± 7.4 mmHg; IOP M12: 18.5 ± 6.4 mmHg; Meds 3.5 ± 3.4 at M12</td>
</tr>
<tr>
<td>Maftei et al. (2019)</td>
<td>20</td>
<td>Refract.</td>
<td>12</td>
<td>Prosp. single centre</td>
<td>IOP Baseline: 36.4 ± 5.7 mmHg; IOP M12: 22.5 ± 10.6 mmHg; Meds 4.5 ± 4.0 at M12</td>
</tr>
<tr>
<td>Auff et al. (2014)</td>
<td>28</td>
<td>Refract.</td>
<td>12</td>
<td>Prosp. Multic.</td>
<td>IOP Baseline: 29.0 ± 7.2 mmHg; IOP M12: 21.6 ± 6.8 mmHg; Meds 3.5 ± 3.5 at M12</td>
</tr>
<tr>
<td>Auff et al. (2014)</td>
<td>30</td>
<td>Non-refract.</td>
<td>12</td>
<td>Prosp. Multic.</td>
<td>IOP Baseline: 28.2 ± 7.2 mmHg; IOP M12: 19.6 ± 5.7 mmHg; Meds 2.6 ± 3.1 at M12</td>
</tr>
<tr>
<td>Bouanani et al. (2015)</td>
<td>30</td>
<td>Refract. + non-refract.</td>
<td>12</td>
<td>Prosp. Multic.</td>
<td>IOP Baseline: 28.6 ± 5.3 mmHg; IOP M12: 18.4 ± 5.5 mmHg; Meds 3.0 ± 2.9 at M12</td>
</tr>
<tr>
<td>Buonacore et al. (2014)</td>
<td>30</td>
<td>Refract. + non-refract.</td>
<td>9</td>
<td>Prosp. single centre</td>
<td>IOP Baseline: 29.3 ± 9.6 mmHg; IOP M12: 21.6 ± 5.9 mmHg; Meds 2.6 ± 2.9 at M12</td>
</tr>
<tr>
<td>Buonacore et al. (2014)</td>
<td>60</td>
<td>Refract. + non-refract.</td>
<td>6 Prosp. single centre</td>
<td>IOP Baseline: 21.6 ± 4.7 mmHg; IOP M12: 13.8 ± 3.9 mmHg; Meds 2.6 ± 2.2 at M12</td>
<td>75%</td>
</tr>
<tr>
<td>Denis (2016)</td>
<td>12</td>
<td>Refract. + non-refract.</td>
<td>6 Prosp. Multic.</td>
<td>IOP Baseline: 24.8 ± 6.9 mmHg; IOP M12: 15.9 ± 5.9 mmHg; Meds 1.3 ± 1.2 at M12</td>
<td>65%</td>
</tr>
</tbody>
</table>

AIM

Key Results

- Mean IOP-lowering efficiency > 30% (12 months)
- Satisfactory response rate
- High Safety Profile
 - Most common adverse effect: impaired iris mobility
 - No impact on later surgeries (if needed)
- Glaucoma Clinic Management
 - Only two post-op visits during first month (D1, D30)
 - Fast, easy to learn, automated procedure (< 15’)
 - Potential to avoid filtering surgery

Conclusions

Acknowledgments
Ultrasound Cycloplasty – a new paradigm in glaucoma management?

Shift in *status quo* for ciliary body procedures?

- Use in surgery-naïve patients
- Delay the need for filtering procedures
- Allow for IOP-lowering drugs reduction

What question moves you?

Obrigado

شكرا