REFRACTIVE LENS SURGERY

Refractive lens surgery or Refractive Lens exchange (RLE) is frequently used as a refractive surgical procedure for the correction of high ametropias and presbyopia when LASIK, PRK, SMILE or phakic intraocular lens refractive surgery is unsuitable.
REQUIREMENTS FOR PERFECTION IN OUTCOMES

• Motivation
• Adequate Patient information and Selection
• No eye pathology
• Accurate biometry and IOL Calculation
• State-of-the-Art Surgery
• Close post-operative monitoring
• Fine tuning – Re-enhancement

MOTIVATION

Demand for surgery by the candidate
Professional requirements
Lifestyle
Contact Lens Intolerance
Realistic Expectations !
PATIENT SELECTION AND INFORMATION

• Customized Approach
• Enough chair time to explain the options
• Age: Hyperopes: >50 yrs
 High Hyperopes: > 40-45 yrs
 Myopes: > 50-55 yrs
 Presbyopes: > 55 yrs

PATIENT SELECTION AND INFORMATION

• Which IOL?
• Monovision?
• IOL Simulator
• Objective Evaluation
SIMVIS SIMULATOR (2EYESVISION)

- Estimation of patient satisfaction before implantation
- Screening out patients not suitable for multifocality or monovision

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR

SIMVIS SIMULATOR (2EYESVISION)

- Comparison of
 - Monofocal IOLs
 - Multifocal IOLs
 - Monovision
 - Mix-and-match

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR
VIVIOR (VISUAL BEHAVIOR MONITOR)

- Objective evaluation of visual needs
- Activity Recognition
- Exact Working Distances
- Ambient Light Color & Intensity
- Head Motion and positioning

Measurements can be mapped two-dimensionally in terms of viewing distance distribution

Measurements allow identification and characterizing of individual activities to derive a personal vision profile
VIVIOR (VISUAL BEHAVIOR MONITOR)

• Provides a detailed and accurate account of the patient’s visual needs based on his/her personal lifestyle
• Education of patients about their best refractive options
• Helps the surgeon to select the best IOL choice

EYE CONDITION

• Exclude eyes with pathology that affects visual acuity, contrast sensitivity, visual fields or pupillary reaction
• No systemic disease that may affect vision in the future
• Avoid large mesopic – scotopic pupils
• Always check periphery of retina
• *Indication in Narrow Iridocorneal Angle
ACCURATE BIOMETRY AND IOL CALCULATION

• Estimation of Effective Lens Position
• Posterior Corneal Astigmatism
• Previous Corneal Refractive Surgery
MODERN FORMULAS

ACCURATE BIOMETRY AND IOL CALCULATION

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR
STATE-OF-THE-ART SURGERY

- No induction of astigmatism
- Correction of pre-existing astigmatism
- Capsulorhexis Centration
- Posterior Capsular Cleaning
- IOL Centration
- Avoid complications!

ZERO INDUCED ASTIGMATISM

- Minimal incision 1.8 – 2.2 mm
- On steepest axis
- Appropriate instrument gauge
- Care to not stretch or burn the wound
CORRECTION OF PREEXISTING ASTIGMATISM

• TORIC IOLS

Higher precision in astigmatic correction
Wider range of Astigmatism Correction
No further surgical procedures
No corneal trauma
Can be applied in corneas with pathology
Ability of further correction (IOL rotation) if needed

CORRECTION OF PREEXISTING ASTIGMATISM

• ASTIGMATIC KERATOTOMIES (FEMTOLASER- ASSISTED)

Penetrating
Intrastromal
Less dry eye
Less inflammation
Less discomfort
Uncut : 20% anteriorly and posteriorly
8mm optical zone
Centered to the limbus
CORRECTION OF PREEXISTING ASTIGMATISM

196 eyes of 133 patients

>0.70 D of astigmatism

8.0 mm zone

TIA: 1.21 D ± 0.42 D
SIA: 0.74 D ± 0.40 D
DV: 0.74 D ± 0.38 D

Mean Astigmatism Correction: 63%

ASTIGMATIC CORRECTION

<table>
<thead>
<tr>
<th>WTR</th>
<th>ATR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 - 0.5 D</td>
<td>FSAK or None</td>
</tr>
<tr>
<td>0.5 - 1.0 D</td>
<td>FSAK</td>
</tr>
<tr>
<td>> 1.0 D</td>
<td>TIOL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temporal Surgeon Position
ORA (ALCON)

- Real time measurements of the refractive status of the eye during cataract surgery
- Selection of the IOL sphere and Cylinder
- Assistance in Toric IOL Positioning

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR

SOURCES OF ERROR IN ASTIGMATIC CORRECTION

- Wrong Axis Calculation
- Incorrect marking
- Inaccurate IOL Placement
- Misalignment of IOL
- Capsular fibrosis

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR
ACCURACY OF TORIC IOLS

• 4.3° difference from intended position
• Evaluation at the Slit Lamp
• Best Achieved accuracy in IOL placement:

± 5° = 15% loss of astigmatic correction

CAPSULORHEXIS OR CAPSULOTOMY

• A critical and challenging step in the cataract procedure that provides foundation for lens extraction and stable in-the-bag IOL fixation.
• Complete enveloping of IOL
 Reduction of PCO
 More predictable ELP (Effective Lens Position)
ADVANTAGES OF FEMTOLASER CAPSULOTOMY

• More precise placement
• Better centration
• Complete Circularity
• Precision in diameter in relation to the IOL

CONTRAINDICATIONS OF FEMTOCAPSULOTOMY

• Corneal opacities
• Previous Bleb surgery
• Small myotic pupil
• Relative: Poor mobility, tremor, nystagmus, attention deficit disorders, inability to lie flat, deep-set eyes and narrow palpebral apertures
CAPSULAR INTEGRITY

- Laser anterior capsulotomy integrity seems to be compromised by postage-stamp perforations and additional aberrant pulses, possibly because of fixational eye movements.

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR

CAPSULAR INTEGRITY

- A capsulotomy of 5.25 mm, centered on the anterior pole of the lens capsule, would be most likely to intersect the anterior capsule at its thickest (and therefore strongest) point.

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR
PREVENTION OF PCO

Complete overlap of the IOL enhances the barrier effect to epithelial cell growth

POSTERIOR CAPSULE OPACIFICATION

• Vertical tilt, horizontal and total decentration of intraocular lenses and PCO proved to be significantly higher in the manual CCC group.

• Due to better intraocular lens position, femtosecond laser-assisted anterior capsulotomy resulted in slightly decreased PCO scores
WHICH IOL? – MONOVISION?

- Selection of IOL depends on individual needs and lifestyle

 - Monofocal IOLs
 - EDOF (Enhanced Depth of Focus) IOLs
 - Multifocal (Trifocal) IOLs
 - Monovision
 - Mix-and-Match
IOL SELECTION - TIPS

• Hyperopic presbyopes: The happiest group with multifocal IOLs
• Best mid-distance correction mostly appreciated by younger individuals that spend a lot of time in front of a computer screen (EDOF IOLs)
• Monovision with monofocal IOLs is a good choice for those that can not tolerate halos
• Spend more chair time with myopes of 2-3 D

POSTOP PATIENT MONITORING

• Neuroadaptation
• Explain Photopic phenomena
• “Brainwashing”
• Treat dry eyes
• Do not rush for IOL exchange
MAIN CAUSES OF DISSATISFACTION

- Unsatisfactory Visual Acuity
 - Residual Refractive Error
 - Spherical
 - Cylindrical (>0.75 D)
 - IOL decentration
 - Posterior Capsule Opacification
 - Large Pupil
 - Limited reading depth
 - Dry Eyes
 - IOL opacification/glistenings

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR

MAIN CAUSES OF DISSATISFACTION

- Photopic Phenomena
- Wrong Personality Selection
 - High Expectations
 - Low motivation
- Unilateral implantation

Pantelis A. Papadopoulos, MD, PhD, FEBO, FEBOS-CR
RE-ADJUSTMENTS

• PRK, LASIK, SMILE
• Add-on IOLs
• Lens Exchange
• In Situ Refractive Power Index change

REFRACTIVE INDEX SHAPING OF IOLs

• Alteration of Hydrophilicity of targeted areas in the optic of an IOL with FEMTOlaser
• Spherical, Toric and Spherocylindrical changes
• Induction of Multifocality
• Cancellation of Multifocality
IOL REFRACTIVE INDEX SHAPING

Biocompatibility of intraocular lens power adjustment using a femtosecond laser in a rabbit model

IOL power adjustment by a femtosecond laser: In vitro evaluation of power change, MTF, light transmission, and light scattering in a blue-light filtering lens

Multifocal to Monofocal

Before laser After laser

L. Werner, Nick Mamalis
CLOSING REMARKS

• Although the accuracy in the IOL calculations, the IOL technology and the surgical performance has extremely progressed in the last decades, we still haven’t reached the desired point of excellence in refractive lens surgery.

• The in situ IOL power index shaping could further improve our results.

THANK YOU FOR YOUR KIND ATTENTION!
شكرا على حسن انتباهكم!