Glaucoma valve complications

Prof Dr : Abd EL Hamid El Houfi
Presented by : Ali Gamal Eldin

Glaucoma in numbers

• the 2nd leading cause of blindness in the world.
• the total number of people (aged 40–80 years) with glaucoma worldwide was estimated to be 64.3 million.
• Africa had the second highest number of cases with 8.3 million (13%)
Glaucoma overview

- Although many risk factors have been described for glaucoma development and progression, IOP, age, genetic predisposition, and vascular parameters.
- Lowering IOP is the only scientifically demonstrated method to slow the progression of the disease.
- IOP reduction in glaucoma patients can be achieved with medical, laser, or surgical therapy.
- Variable success rates for trabeculectomy have been reported in literature. Although success rates are high in the first few years after surgery (70%–92%), they tend to decrease with time (42%–90%), especially in secondary glaucomas.

History:

- First attempts at developing a glaucoma drainage implant were published in 1906.
- the first device currently in use was developed by Molteno et al only in 1976.
- offers no resistance to AH outflow and associated with high rate of complications, such as hypotony, shallow anterior chamber (AC), choroidal effusion, and choroidal detachment.
- in 1976, Krupin designed a pressure-sensitive unidirectional valve to provide filtration restriction. Its passive mechanism contemplates a silastic tube, whose distal end is sealed and contains several horizontal and vertical slits. Krupin implant is designed to open when IOP is >11 mmHg.
- many other implants have been designed.
- The two basic types are "valved" (Ahmed or Krupin) and "non-valved" (Molteno, Baerveldt) designs.

Philosophy behind glaucoma drainage implant

- Aqueous shunts are a reliable alternative to trabeculectomy. Conceptually, shunting aqueous humor (AH) to the posterior subconjunctival space may avoid healing issues, especially in patients who have already undergone previous glaucoma surgeries or conjunctival manipulation.

Efficacy of aqueous shunts

Conclusions

Based on level I evidence, aqueous shunts seem to have benefits (IOP control, duration of benefit) comparable with those of trabeculectomy in the management of complex glaucomas (phakic or pseudophakic eyes after prior failed trabeculectomies).

Level I evidence indicates that there are no advantages to the adjunctive use of antifibrotic agents or systemic corticosteroids with currently available shunts. Too few high-quality direct comparisons of various available shunts have been published to assess the relative efficacy or complication rates of specific devices beyond the implication that larger–surface-area explants provide milder sustained and better IOP control. Long-term follow-up and comparative studies are encouraged.

Ahmed Glaucoma Valve (AGV)

• AGV provides a more complex mechanism to control AH outflow.
• It was developed by Mateen Ahmed and was approved by the Food and Drug Administration in 1993.
• It consists of 3 parts:
 1) a plate, in medical grade silicone, polypropylene, or porous polyethylene, depending on the model.
 2) a drainage tube in medical grade silicone.
 3) a valve mechanism in medical grade silicone.
• Polypropylene is a rigid plastic, not flexible and highly resistant to torsional forces, whereas silicone is a flexible rubber.
Ahmed Glaucoma Valve (AGV)

Surgical technique:

1. The implant should be examined for integrity and primed before implantation. Priming is performed by using a 26G cannula, injecting ~1 cc of balanced salt solution (BSS) or sterile water through the drainage tube. Functionality of the implant is demonstrated by BSS flow through the plate.

2. Surgical technique for AGV implantation consists of a fornix-based or limbal-based conjunctival incision to create a conjunctival flap between 2 recti muscles, generally in the superotemporal quadrant.
Surgical technique:

• Body implant is positioned 8–10 mm from the limbus.
• The plate is then sutured to the sclera with a 9.0 or 10.0 nylon suture.

Surgical technique:

• The drainage tube is trimmed to permit a 2–3 mm insertion in the AC and is bevel cut to an angle of 30°, to facilitate AC entering.
• An AC paracentesis is performed, and viscoelastic substance is injected to increase spaces. The AC is then entered 1–3 mm posteriorly to the corneoscleral limbus with a 22–23G needle.
Surgical technique:

- The drainage tube is covered with a piece of preserved, donor sclera, pericardium, cornea, or other suitable patch graft material, which is sutured to the sclera. Alternatively, a two-third thickness limbus scleral flap is created.
- In the final step, conjunctiva is anchored to the limbus with adsorbable/nonadsorbable sutures.
Indications of tube shunt procedure

- Neovascular glaucoma.
- Uveitic glaucoma.
- Traumatic glaucoma.
- Silicone induced glaucoma.
- Infantile/Juvenile glaucoma ??

AGV complications

A report from the American Academy of Ophthalmology has reported the major short-term (up to 5 years after surgery) to medium-term (5–10 years after surgery) complications of aqueous shunt devices.

AGV complications

• Actually, there is no evidence in literature about different rates of complications with 1 AGV model than another. Although an higher IOP reduction with the silicone-plate model than the polyethylene one has been described in the short term, long-term results are not conclusive.

AGV complications

• **Hyphema:**

Hyphema may occur following procedures performed on eyes with neovascular glaucoma. It is seen less commonly now with the preoperative use of anti-VEGF agents.
AGV complications

• **Scleral Perforation**:
 Scleral perforation is a rare complication during anchorage of the plate to the sclera. Care must be taken in buphthalmic eyes and eyes with collagen vascular diseases.

AGV complications

• **Migration or Expulsion of the Plate**:
 Rare complications. Migration and expulsion usually result from placing the plate too anteriorly.
AGV complications

- **Hypotony**:
 - AGV valve mechanism was designed with the aim of preventing postoperative hypotony, allowing for AH drainage when IOP is in the range of 8–12 mmHg.
 - Studies have demonstrated that the mechanism is effective in reducing, but not abolishing.
AGV complications

• Hypotony:

- The reason of persistent hypotony after AGV implantation is not completely clear. Attention should be taken during surgical procedure to not over-prime the tube and to not excessively manipulate the valve housing, as these actions could damage the valve mechanism embedded in the implant.
- Ciliary body function may fail or decrease after surgery in complicated eyes in which glaucoma drainage implants are used.

<table>
<thead>
<tr>
<th></th>
<th>Ahmed-FP7</th>
<th>Baerveldt-350 Implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of eyes</td>
<td>124</td>
<td>114</td>
</tr>
<tr>
<td>Suprachoroidal hemorrhage</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Had retinal/choroidal detachments</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Refractory hypotony</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

AGV complications

• *IOP increase and excessive capsule fibrosis:*

 • An “hypertensive” phase after glaucoma drainage implantation is quite common and has been frequently described in patients with AGV. Typically, this phase peaks at 1 or 2 months postoperatively and resolves within 6 months.

 • The hypertensive phase could be less frequent in patients who have been implanted with the silicone than with the polypropylene AGV, probably because silicone is less inflammatory than polypropylene.

• AGV complications

 • *IOP increase and excessive capsule fibrosis:*

 • The primary reason for elevated IOP in the postoperative period is from capsular fibrosis. Attempts have been made to modulate the fibrotic reaction around the plate, varying plate size, shape, flexibility, and materials.

AGV complications

• **IOP increase and excessive capsular fibrosis:**

 • An option in the **management** of the hypertensive phase is, similar to trabeculectomy, **digital massage**. The purpose of digital massage is to force AH through the tube, opening the valve mechanism, and reducing scar formation. Caution should be placed in this maneuver in order to avoid repeated tube-corneal endothelial touch.

• **AGV complications**

 • **IOP increase and excessive capsular fibrosis:**

 • **Late IOP increase (>6 months)** is the main cause of **long-term failure** of AGV surgery.

 • **encapsulation** of the plate is evident, a **needling** revision of the bleb may be attempted +/- 5FLU injection.

 • If medical therapy and needling revision are not successful, **surgical revision of the implant** should be performed.
AGV complications

• **IOP increase** without capsular fibrosis:

AGV complications

• **Tube exposure**:
 • Tube exposure is a well-known complication of glaucoma drainage implants. Erosion of the conjunctiva and of the covering patch graft has been described in the late postoperative period in **2%–7%** of eyes after implantation of glaucoma devices.

AGV complications

• Tube exposure:
AGV complications

- Tube exposure:
- After severe blunt trauma

The mechanism responsible for tube exposure is not completely clear:
- A high grade, immune-mediated process could be responsible for rapid melting (<6 months) of the patch.
- A mechanical process could be involved in patch erosion as well.
- If tube is not fixed on the sclera, continuous and minimum movements may produce tube-graft tension resulting in gradual patch atrophy.
- Finally, patch melting could occur as a result of a low grade, possibly immune-mediated, long-term, atrophy process, with consequent gradual patch thinning.
AGV complications

• Malignant glaucoma:
 • first described by von Graefe in 1869
 • characterized by elevated IOP with a shallow or flat anterior chamber.
 • usually occurs following ocular surgery.
 • Other names: including aqueous misdirection, ciliary block glaucoma and lens block angle closure.

AGV complications

• Malignant glaucoma:
 • Risk factors:
 • 1) 2-4% of eyes undergoing surgery for angle-closure glaucoma.
 • 2) hours to days or years after iatrogenic causes such as trabeculectomy, cataract extraction with or without IOL implantation, glaucoma drainage implantation, laser iridotomy, capsulotomy, laser suture lysis or argon laser photocoagulation, miotic therapy, needling of filtering blebs, viscoelastic use or intravitreal injection.
 • 3) Women are three times more likely than men to develop malignant glaucoma, possibly because they have a smaller mean axial length than men

AGV complications

• Malignant glaucoma:

[Malignant glaucoma following combined Ahmed valve implant and phacoemulsification surgery for chronic angle-closure glaucoma].

[Article in Spanish]
Martínez-de-la-Casa JM, García-Felipo J, Castillo A, Polo V, Larrosa JM, Pablo L, García-Sánchez J.

Author information

CASE REPORT: Simultaneous Ahmed valve implant, combined with phacoemulsification cataract surgery, is a useful therapeutic option for patients with chronic angle-closure glaucoma, when conventional filtering surgery fails. This combined approach permits both control of intraocular pressure and early recovery of visual function. We report the results in five patients successfully treated with this combined procedure, two of whom developed early postoperative malignant glaucoma.

DISCUSSION: Predisposing anatomic features in patients with chronic angle-closure glaucoma, associated with sudden anterior chamber decompression and increased postoperative inflammation, may facilitate the development of malignant glaucoma following combined glaucoma implant and phacoemulsification surgery.
AGV complications

• Malignant glaucoma:

AGV complications

• Corneal complications:
 • The presence of the silicone tube in the AC is known to disturb corneal endothelium and may induce corneal decompensation and edema.
 • The exact frequency of corneal issues in patients implanted with AGV is not known, but it has been reported to be 9%–27% in the long term.
AGV complications

- Corneal complications:
AGV complications

- Corneal complications:
 - Prevention → tube insertion in PC in selected cases.
 - tube adjustment.
AGV complications

• *Infection and endophthalmitis:*

Endophthalmitis or infections associated with grafting material covering the tube is a rare complication of glaucoma drainage implants. For this reason, recurrent blebitis after trabeculectomy can be a reasonable indication for shunt implantation, according to a report by the American Academy of Ophthalmology.
AGV complications

• **Infection and endophthalmitis:**
 • Several retrospective studies about glaucoma drainage implants included few cases of endophthalmitis, resulting in rates ranging from **0.8% to 6.3%** (mean: 2.0%).
 • There appears to be **no significant difference** in reported rates of endophthalmitis among **various glaucoma drainage implants**.
 • Conjunctival **erosion and tube exposure** appear to be a **major risk factor** for infection development in eyes with glaucoma drainage implants.

AGV complications

• **Diplopia and strabismus:**
 • Diplopia and strabismus are **well-known postsurgical complications** of glaucoma drainage devices.
 • The cause of diplopia is likely a **restrictive strabismus**, either from the plate itself or from the plate impinging on the muscle insertion. **Manipulation of the rectus muscles** during surgery may induce strabismus as well, which **usually resolves spontaneously** in weeks or months.

AGV complications

• *Diplopia and strabismus:*